The Scutellaria baicalensis R2R3-MYB Transcription Factors Modulates Flavonoid Biosynthesis by Regulating GA Metabolism in Transgenic Tobacco Plants
نویسندگان
چکیده
R2R3-MYB proteins play role in plant development, response to biotic and abiotic stress, and regulation of primary and secondary metabolism. Little is known about the R2R3-MYB proteins in Scutellaria baicalensis which is an important Chinese medical plant. In this paper, nineteen putative SbMYB genes were identified from a S. baicalensis cDNA library, and eleven R2R3-MYBs were clustered into 5 subgroups according to phylogenetic reconstruction. In the S. baicalensis leaves which were sprayed with GA3, SbMYB2 and SbMYB7 had similar expression pattern with SbPALs, indicating that SbMYB2 and SbMYB7 might be involved in the flavonoid metabolism. Transactivation assay results showed that SbMYB2 and SbMYB7 can function as transcriptional activator. The expression of several flavonoid biosynthesis-related genes were induced or suppressed by overexpression of SbMYB2 or SbMYB7 in transgenic tobacco plants. Consistent with the change of the expression of NtDH29 and NtCHI, the contents of dicaffeoylspermidine and quercetin-3,7-O-diglucoside in SbMYB2-overexpressing or SbMYB7-overexpressing transgenic tobacco plants were decreased. The transcriptional level of NtUFGT in transgenic tobacco overexpressing SbMYB7 and the transcriptional level of NtHCT in SbMYB2-overexpressing tobacco plants were increased; however the application of GA3 inhibited the transcriptional level of these two genes. These results suggest that SbMYB2 and SbMYB7 might regulate the flavonoid biosynthesis through GA metabolism.
منابع مشابه
Water Deficit Affected Flavonoid Accumulation by Regulating Hormone Metabolism in Scutellaria baicalensis Georgi Roots
The content of flavonoids especially baicalin and baicalein determined the medical quality of Scutellaria baicalensis which is a Chinese traditional medicinal plant. Here, we investigated the mechanism responsible for the content and composition of flavonoids in S. baicalensis under water deficit condition. The transcription levels of several genes which are involved in flavonoid biosynthesis w...
متن کاملIsolation and characterization of GtMYBP3 and GtMYBP4, orthologues of R2R3-MYB transcription factors that regulate early flavonoid biosynthesis, in gentian flowers
Flavonoids are one of the major plant pigments for flower colour. Not only coloured anthocyanins, but also co-pigment flavones or flavonols, accumulate in flowers. To study the regulation of early flavonoid biosynthesis, two R2R3-MYB transcription factors, GtMYBP3 and GtMYBP4, were identified from the petals of Japanese gentian (Gentiana triflora). Phylogenetic analysis showed that these two pr...
متن کاملFunctional Characterization of a Novel R2R3-MYB Transcription Factor Modulating the Flavonoid Biosynthetic Pathway from Epimedium sagittatum
Epimedium species have been widely used both as traditional Chinese medicinal plants and ornamental perennials. Both flavonols, acting as the major bioactive components (BCs) and anthocyanins, predominantly contributing to the color diversity of Epimedium flowers belong to different classes of flavonoids. It is well-acknowledged that flavonoid biosynthetic pathway is predominantly regulated by ...
متن کاملA R2R3-MYB Transcription Factor Regulates the Flavonol Biosynthetic Pathway in a Traditional Chinese Medicinal Plant, Epimedium sagittatum
Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components (BCs) in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional Chinese medicine. The flavonol biosynthetic pathway genes had been already isolated from Epimedium s...
متن کاملThe AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco
MYB-related transcription factors are known to regulate different branches of flavonoid metabolism in plants and are believed to play wider roles in the regulation of phenylpropanoid metabolism in general. Here, we demonstrate that overexpression of two MYB genes from Antirrhinum represses phenolic acid metabolism and lignin biosynthesis in transgenic tobacco plants. The inhibition of this bran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013